Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Article in English | MEDLINE | ID: mdl-38662568

ABSTRACT

While pre-training large-scale video-language models (VLMs) has shown remarkable potential for various downstream video-language tasks, existing VLMs can still suffer from certain commonly seen limitations, e.g., coarse-grained cross-modal aligning, under-modeling of temporal dynamics, detached video-language view. In this work, we target enhancing VLMs with a fine-grained structural spatio-temporal alignment learning method (namely Finsta). First of all, we represent the input texts and videos with fine-grained scene graph (SG) structures, both of which are further unified into a holistic SG (HSG) for bridging two modalities. Then, an SG-based framework is built, where the textual SG (TSG) is encoded with a graph Transformer, while the video dynamic SG (DSG) and the HSG are modeled with a novel recurrent graph Transformer for spatial and temporal feature propagation. A spatial-temporal Gaussian differential graph Transformer is further devised to strengthen the sense of the changes in objects across spatial and temporal dimensions. Next, based on the fine-grained structural features of TSG and DSG, we perform object-centered spatial alignment and predicate-centered temporal alignment respectively, enhancing the video-language grounding in both the spatiality and temporality. We design our method as a plug&play system, which can be integrated into existing well-trained VLMs for further representation augmentation, without training from scratch or relying on SG annotations in downstream applications. On 6 representative VL modeling tasks over 12 datasets in both standard and long-form video scenarios, Finsta consistently improves the existing 13 strong-performing VLMs persistently, and refreshes the current state-of-the-art end task performance significantly in both the fine-tuning and zero-shot settings.

2.
Article in English | MEDLINE | ID: mdl-38536692

ABSTRACT

AdamW modifies Adam by adding a decoupled weight decay to decay network weights per training iteration. For adaptive algorithms, this decoupled weight decay does not affect specific optimization steps, and differs from the widely used l2-regularizer which changes optimization steps via changing the first- and second-order gradient moments. Despite its great practical success, for AdamW, its convergence behavior and generalization improvement over Adam and l2-regularized Adam ( l2-Adam) remain absent yet. To solve this issue, we prove the convergence of AdamW and justify its generalization advantages over Adam and l2-Adam. Specifically, AdamW provably converges but minimizes a dynamically regularized loss that combines vanilla loss and a dynamical regularization induced by decoupled weight decay, thus yielding different behaviors with Adam and l2-Adam. Moreover, on both general nonconvex problems and PL-conditioned problems, we establish stochastic gradient complexity of AdamW to find a stationary point. Such complexity is also applicable to Adam and l2-Adam, and improves their previously known complexity, especially for over-parametrized networks. Besides, we prove that AdamW enjoys smaller generalization errors than Adam and l2-Adam from the Bayesian posterior aspect. This result, for the first time, explicitly reveals the benefits of decoupled weight decay in AdamW. Experimental results validate our theory.

3.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3406-3421, 2024 May.
Article in English | MEDLINE | ID: mdl-38109234

ABSTRACT

Vision-Language Pre-Training (VLP) has demonstrated remarkable potential in aligning image and text pairs, paving the way for a wide range of cross-modal learning tasks. Nevertheless, we have observed that VLP models often fall short in terms of visual grounding and localization capabilities, which are crucial for many downstream tasks, such as visual reasoning. In response, we introduce a novel Position-guided Text Prompt (PTP) paradigm to bolster the visual grounding abilities of cross-modal models trained with VLP. In the VLP phase, PTP divides an image into N x N blocks and employs a widely-used object detector to identify objects within each block. PTP then reframes the visual grounding task as a fill-in-the-blank problem, encouraging the model to predict objects in given blocks or regress the blocks of a given object, exemplified by filling "[P]" or "[O]" in a PTP sentence such as "The block [P] has a [O]." This strategy enhances the visual grounding capabilities of VLP models, enabling them to better tackle various downstream tasks. Additionally, we integrate the seconda-order relationships between objects to further enhance the visual grounding capabilities of our proposed PTP paradigm. Incorporating PTP into several state-of-the-art VLP frameworks leads to consistently significant improvements across representative cross-modal learning model architectures and multiple benchmarks, such as zero-shot Flickr30 k Retrieval (+5.6 in average recall@1) for ViLT baseline, and COCO Captioning (+5.5 in CIDEr) for the state-of-the-art BLIP baseline. Furthermore, PTP attains comparable results with object-detector-based methods and a faster inference speed, as it discards its object detector during inference, unlike other approaches.

4.
Article in English | MEDLINE | ID: mdl-38090834

ABSTRACT

Existing Transformers for monocular 3D human shape and pose estimation typically have a quadratic computation and memory complexity with respect to the feature length, which hinders the exploitation of fine-grained information in high-resolution features that is beneficial for accurate reconstruction. In this work, we propose an SMPL-based Transformer framework (SMPLer) to address this issue. SMPLer incorporates two key ingredients: a decoupled attention operation and an SMPL-based target representation, which allow effective utilization of high-resolution features in the Transformer. In addition, based on these two designs, we also introduce several novel modules including a multi-scale attention and a joint-aware attention to further boost the reconstruction performance. Extensive experiments demonstrate the effectiveness of SMPLer against existing 3D human shape and pose estimation methods both quantitatively and qualitatively. Notably, the proposed algorithm achieves an MPJPE of 45.2 mm on the Human3.6M dataset, improving upon the state-of-the-art approach [1] by more than 10% with fewer than one-third of the parameters.

5.
Article in English | MEDLINE | ID: mdl-37910405

ABSTRACT

MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive performance. In this paper, we further explore the capacity of MetaFormer, again, by migrating our focus away from the token mixer design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and demonstrate their gratifying performance. We summarize our observations as follows: (1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the MetaFormer model, termed IdentityFormer, achieves [Formula: see text]80% accuracy on ImageNet-1 K. (2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens, the resulting model RandFormer yields an accuracy of [Formula: see text]81%, outperforming IdentityFormer. Rest assured of MetaFormer's results when new token mixers are adopted. (3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the models instantiated from MetaFormer already beat state of the art. (a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt. (b) CAFormer sets new record on ImageNet-1 K. By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1 K: it achieves an accuracy of 85.5% at 224 ×224 resolution, under normal supervised training without external data or distillation. In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with commonly-used GELU yet achieves better performance. Specifically, StarReLU is a variant of Squared ReLU dedicated to alleviating distribution shift. We expect StarReLU to find great potential in MetaFormer- like models alongside other neural networks. Code and models are available at https://github.com/sail-sg/metaformer.

6.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13265-13280, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402185

ABSTRACT

We propose to perform video question answering (VideoQA) in a Contrastive manner via a Video Graph Transformer model (CoVGT). CoVGT's uniqueness and superiority are three-fold: 1) It proposes a dynamic graph transformer module which encodes video by explicitly capturing the visual objects, their relations and dynamics, for complex spatio-temporal reasoning. 2) It designs separate video and text transformers for contrastive learning between the video and text to perform QA, instead of multi-modal transformer for answer classification. Fine-grained video-text communication is done by additional cross-modal interaction modules. 3) It is optimized by the joint fully- and self-supervised contrastive objectives between the correct and incorrect answers, as well as the relevant and irrelevant questions respectively. With superior video encoding and QA solution, we show that CoVGT can achieve much better performances than previous arts on video reasoning tasks. Its performances even surpass those models that are pretrained with millions of external data. We further show that CoVGT can also benefit from cross-modal pretraining, yet with orders of magnitude smaller data. The results demonstrate the effectiveness and superiority of CoVGT, and additionally reveal its potential for more data-efficient pretraining.

7.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13553-13566, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37432804

ABSTRACT

Unsupervised domain adaption has been widely adopted in tasks with scarce annotated data. Unfortunately, mapping the target-domain distribution to the source-domain unconditionally may distort the essential structural information of the target-domain data, leading to inferior performance. To address this issue, we first propose to introduce active sample selection to assist domain adaptation regarding the semantic segmentation task. By innovatively adopting multiple anchors instead of a single centroid, both source and target domains can be better characterized as multimodal distributions, in which way more complementary and informative samples are selected from the target domain. With only a little workload to manually annotate these active samples, the distortion of the target-domain distribution can be effectively alleviated, achieving a large performance gain. In addition, a powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem and further improve the segmentation performance. Extensive experiments are conducted on public datasets, and the results demonstrate that the proposed approach outperforms state-of-the-art methods by large margins and achieves similar performance to the fully-supervised upperbound, i.e., 71.4% mIoU on GTA5 and 71.8% mIoU on SYNTHIA. The effectiveness of each component is also verified by thorough ablation studies.

8.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 12844-12861, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37015683

ABSTRACT

Zero-shot learning (ZSL) tackles the novel class recognition problem by transferring semantic knowledge from seen classes to unseen ones. Semantic knowledge is typically represented by attribute descriptions shared between different classes, which act as strong priors for localizing object attributes that represent discriminative region features, enabling significant and sufficient visual-semantic interaction for advancing ZSL. Existing attention-based models have struggled to learn inferior region features in a single image by solely using unidirectional attention, which ignore the transferable and discriminative attribute localization of visual features for representing the key semantic knowledge for effective knowledge transfer in ZSL. In this paper, we propose a cross attribute-guided Transformer network, termed TransZero++, to refine visual features and learn accurate attribute localization for key semantic knowledge representations in ZSL. Specifically, TransZero++ employs an attribute → visual Transformer sub-net (AVT) and a visual → attribute Transformer sub-net (VAT) to learn attribute-based visual features and visual-based attribute features, respectively. By further introducing feature-level and prediction-level semantical collaborative losses, the two attribute-guided transformers teach each other to learn semantic-augmented visual embeddings for key semantic knowledge representations via semantical collaborative learning. Finally, the semantic-augmented visual embeddings learned by AVT and VAT are fused to conduct desirable visual-semantic interaction cooperated with class semantic vectors for ZSL classification. Extensive experiments show that TransZero++ achieves the new state-of-the-art results on three golden ZSL benchmarks and on the large-scale ImageNet dataset. The project website is available at: https://shiming-chen.github.io/TransZero-pp/TransZero-pp.html.

9.
IEEE Trans Pattern Anal Mach Intell ; 45(9): 10795-10816, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37074896

ABSTRACT

Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this article aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.

10.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 1328-1334, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35077359

ABSTRACT

In this paper, we present Vision Permutator, a conceptually simple and data efficient MLP-like architecture for visual recognition. By realizing the importance of the positional information carried by 2D feature representations, unlike recent MLP-like models that encode the spatial information along the flattened spatial dimensions, Vision Permutator separately encodes the feature representations along the height and width dimensions with linear projections. This allows Vision Permutator to capture long-range dependencies and meanwhile avoid the attention building process in transformers. The outputs are then aggregated in a mutually complementing manner to form expressive representations. We show that our Vision Permutators are formidable competitors to convolutional neural networks (CNNs) and vision transformers. Without the dependence on spatial convolutions or attention mechanisms, Vision Permutator achieves 81.5% top-1 accuracy on ImageNet without extra large-scale training data (e.g., ImageNet-22k) using only 25M learnable parameters, which is much better than most CNNs and vision transformers under the same model size constraint. When scaling up to 88M, it attains 83.2% top-1 accuracy, greatly improving the performance of recent state-of-the-art MLP-like networks for visual recognition. We hope this work could encourage research on rethinking the way of encoding spatial information and facilitate the development of MLP-like models. PyTorch/MindSpore/Jittor code is available at https://github.com/Andrew-Qibin/VisionPermutator.

11.
IEEE Trans Pattern Anal Mach Intell ; 45(5): 6575-6586, 2023 May.
Article in English | MEDLINE | ID: mdl-36094970

ABSTRACT

Recently, Vision Transformers (ViTs) have been broadly explored in visual recognition. With low efficiency in encoding fine-level features, the performance of ViTs is still inferior to the state-of-the-art CNNs when trained from scratch on a midsize dataset like ImageNet. Through experimental analysis, we find it is because of two reasons: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines, leading to low training sample efficiency; 2) the redundant attention backbone design of ViTs leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we present a new simple and generic architecture, termed Vision Outlooker (VOLO), which implements a novel outlook attention operation that dynamically conduct the local feature aggregation mechanism in a sliding window manner across the input image. Unlike self-attention that focuses on modeling global dependencies of local features at a coarse level, our outlook attention targets at encoding finer-level features, which is critical for recognition but ignored by self-attention. Outlook attention breaks the bottleneck of self-attention whose computation cost scales quadratically with the input spatial dimension, and thus is much more memory efficient. Compared to our Tokens-To-Token Vision Transformer (T2T-ViT), VOLO can more efficiently encode fine-level features that are essential for high-performance visual recognition. Experiments show that with only 26.6 M learnable parameters, VOLO achieves 84.2% top-1 accuracy on ImageNet-1 K without using extra training data, 2.7% better than T2T-ViT with a comparable number of parameters. When the model size is scaled up to 296 M parameters, its performance can be further improved to 87.1%, setting a new record for ImageNet-1 K classification. In addition, we also take the proposed VOLO as pretrained models and report superior performance on downstream tasks, such as semantic segmentation. Code is available at https://github.com/sail-sg/volo.

12.
Article in English | MEDLINE | ID: mdl-36306294

ABSTRACT

Studying the relationship between linear discriminant analysis (LDA) and least squares regression (LSR) is of great theoretical and practical significance. It is well-known that the two-class LDA is equivalent to an LSR problem, and directly casting multiclass LDA as an LSR problem, however, becomes more challenging. Recent study reveals that the equivalence between multiclass LDA and LSR can be established based on a special class indicator matrix, but under a mild condition which may not hold under the scenarios with low-dimensional or oversampled data. In this article, we show that the equivalence between multiclass LDA and LSR can be established based on arbitrary linearly independent class indicator vectors and without any condition. In addition, we show that LDA is also equivalent to a constrained LSR based on the data-dependent indicator vectors. It can be concluded that under exactly the same mild condition, such two regressions are both equivalent to the null space LDA method. Illuminated by the equivalence of LDA and LSR, we propose a direct LDA classifier to replace the conventional framework of LDA plus extra classifier. Extensive experiments well validate the above theoretic analysis.

13.
IEEE Trans Image Process ; 31: 6733-6746, 2022.
Article in English | MEDLINE | ID: mdl-36282824

ABSTRACT

Few-shot segmentation aims at learning to segment query images guided by only a few annotated images from the support set. Previous methods rely on mining the feature embedding similarity across the query and the support images to achieve successful segmentation. However, these models tend to perform badly in cases where the query instances have a large variance from the support ones. To enhance model robustness against such intra-class variance, we propose a Double Recalibration Network (DRNet) with two recalibration modules, i.e., the Self-adapted Recalibration (SR) module and the Cross-attended Recalibration (CR) module. In particular, beyond learning robust feature embedding for pixel-wise comparison between support and query as in conventional methods, the DRNet further exploits semantic-aware knowledge embedded in the query image to help segment itself, which we call 'self-adapted recalibration'. More specifically, DRNet first employs guidance from the support set to roughly predict an incomplete but correct initial object region for the query image, and then reversely uses the feature embedding extracted from the incomplete object region to segment the query image. Also, we devise a CR module to refine the feature representation of the query image by propagating the underlying knowledge embedded in the support image's foreground to the query. Instead of foreground global pooling, we refine the response at each pixel in the query feature map by attending to all foreground pixels in the support feature map and taking the weighted average by their similarity; meanwhile, feature maps of the query image are also added back to weighted feature maps as a residual connection. Our DRNet can effectively address the intra-class variance under the few-shot setting with such two recalibration modules, and mine more accurate target regions for query images. We conduct extensive experiments on the popular benchmarks PASCAL- 5i and COCO- 20i . The DRNet with the best configuration achieves the mIoU of 63.6% and 64.9% on PASCAL- 5i and 44.7% and 49.6% on COCO- 20i for 1-shot and 5-shot settings respectively, significantly outperforming the state-of-the-arts without any bells and whistles. Code is available at: https://github.com/fangzy97/drnet.

14.
Article in English | MEDLINE | ID: mdl-36107893

ABSTRACT

The field of fashion compatibility learning has attracted great attention from both the academic and industrial communities in recent years. Many studies have been carried out for fashion compatibility prediction, collocated outfit recommendation, artificial intelligence (AI)-enabled compatible fashion design, and related topics. In particular, AI-enabled compatible fashion design can be used to synthesize compatible fashion items or outfits to improve the design experience for designers or the efficacy of recommendations for customers. However, previous generative models for collocated fashion synthesis have generally focused on the image-to-image translation between fashion items of upper and lower clothing. In this article, we propose a novel outfit generation framework, i.e., OutfitGAN, with the aim of synthesizing a set of complementary items to compose an entire outfit, given one extant fashion item and reference masks of target synthesized items. OutfitGAN includes a semantic alignment module (SAM), which is responsible for characterizing the mapping correspondence between the existing fashion items and the synthesized ones, to improve the quality of the synthesized images, and a collocation classification module (CCM), which is used to improve the compatibility of a synthesized outfit. To evaluate the performance of our proposed models, we built a large-scale dataset consisting of 20 000 fashion outfits. Extensive experimental results on this dataset show that our OutfitGAN can synthesize photo-realistic outfits and outperform the state-of-the-art methods in terms of similarity, authenticity, and compatibility measurements.

15.
IEEE Trans Pattern Anal Mach Intell ; 44(2): 610-621, 2022 02.
Article in English | MEDLINE | ID: mdl-30998458

ABSTRACT

In this paper, we target at the Fine-grAined human-Centric Tracklet Segmentation (FACTS) problem, where 12 human parts, e.g., face, pants, left-leg, are segmented. To reduce the heavy and tedious labeling efforts, FACTS requires only one labeled frame per video during training. The small size of human parts and the labeling scarcity makes FACTS very challenging. Considering adjacent frames of videos are continuous and human usually do not change clothes in a short time, we explicitly consider the pixel-level and frame-level context in the proposed Temporal Context segmentation Network (TCNet). On the one hand, optical flow is on-line calculated to propagate the pixel-level segmentation results to neighboring frames. On the other hand, frame-level classification likelihood vectors are also propagated to nearby frames. By fully exploiting the pixel-level and frame-level context, TCNet indirectly uses the large amount of unlabeled frames during training and produces smooth segmentation results during inference. Experimental results on four video datasets show the superiority of TCNet over the state-of-the-arts. The newly annotated datasets can be downloaded via http://liusi-group.com/projects/FACTS for the further studies.


Subject(s)
Algorithms , Humans
16.
IEEE Trans Pattern Anal Mach Intell ; 44(1): 474-487, 2022 01.
Article in English | MEDLINE | ID: mdl-32750831

ABSTRACT

Despite the remarkable progress in face recognition related technologies, reliably recognizing faces across ages remains a big challenge. The appearance of a human face changes substantially over time, resulting in significant intra-class variations. As opposed to current techniques for age-invariant face recognition, which either directly extract age-invariant features for recognition, or first synthesize a face that matches target age before feature extraction, we argue that it is more desirable to perform both tasks jointly so that they can leverage each other. To this end, we propose a deep Age-Invariant Model (AIM) for face recognition in the wild with three distinct novelties. First, AIM presents a novel unified deep architecture jointly performing cross-age face synthesis and recognition in a mutual boosting way. Second, AIM achieves continuous face rejuvenation/aging with remarkable photorealistic and identity-preserving properties, avoiding the requirement of paired data and the true age of testing samples. Third, effective and novel training strategies are developed for end-to-end learning of the whole deep architecture, which generates powerful age-invariant face representations explicitly disentangled from the age variation. Moreover, we construct a new large-scale Cross-Age Face Recognition (CAFR) benchmark dataset to facilitate existing efforts and push the frontiers of age-invariant face recognition research. Extensive experiments on both our CAFR dataset and several other cross-age datasets (MORPH, CACD, and FG-NET) demonstrate the superiority of the proposed AIM model over the state-of-the-arts. Benchmarking our model on the popular unconstrained face recognition datasets YTF and IJB-C additionally verifies its promising generalization ability in recognizing faces in the wild.


Subject(s)
Facial Recognition , Aging , Algorithms , Face , Humans , Learning
17.
IEEE Trans Pattern Anal Mach Intell ; 44(11): 8538-8551, 2022 11.
Article in English | MEDLINE | ID: mdl-34033534

ABSTRACT

In this paper, we address the makeup transfer and removal tasks simultaneously, which aim to transfer the makeup from a reference image to a source image and remove the makeup from the with-makeup image respectively. Existing methods have achieved much advancement in constrained scenarios, but it is still very challenging for them to transfer makeup between images with large pose and expression differences, or handle makeup details like blush on cheeks or highlight on the nose. In addition, they are hardly able to control the degree of makeup during transferring or to transfer a specified part in the input face. These defects limit the application of previous makeup transfer methods to real-world scenarios. In this work, we propose a Pose and expression robust Spatial-aware GAN (abbreviated as PSGAN++). PSGAN++ is capable of performing both detail-preserving makeup transfer and effective makeup removal. For makeup transfer, PSGAN++ uses a Makeup Distill Network (MDNet) to extract makeup information, which is embedded into spatial-aware makeup matrices. We also devise an Attentive Makeup Morphing (AMM) module that specifies how the makeup in the source image is morphed from the reference image, and a makeup detail loss to supervise the model within the selected makeup detail area. On the other hand, for makeup removal, PSGAN++ applies an Identity Distill Network (IDNet) to embed the identity information from with-makeup images into identity matrices. Finally, the obtained makeup/identity matrices are fed to a Style Transfer Network (STNet) that is able to edit the feature maps to achieve makeup transfer or removal. To evaluate the effectiveness of our PSGAN++, we collect a Makeup Transfer In the Wild (MT-Wild) dataset that contains images with diverse poses and expressions and a Makeup Transfer High-Resolution (MT-HR) dataset that contains high-resolution images. Experiments demonstrate that PSGAN++ not only achieves state-of-the-art results with fine makeup details even in cases of large pose/expression differences but also can perform partial or degree-controllable makeup transfer. Both the code and the newly collected datasets will be released at https://github.com/wtjiang98/PSGAN.


Subject(s)
Algorithms
18.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 4987-5001, 2022 09.
Article in English | MEDLINE | ID: mdl-33905323

ABSTRACT

Vision and language understanding techniques have achieved remarkable progress, but currently it is still difficult to well handle problems involving very fine-grained details. For example, when the robot is told to "bring me the book in the girl's left hand", most existing methods would fail if the girl holds one book respectively in her left and right hand. In this work, we introduce a new task named human-centric relation segmentation (HRS), as a fine-grained case of HOI-det. HRS aims to predict the relations between the human and surrounding entities and identify the relation-correlated human parts, which are represented as pixel-level masks. For the above exemplar case, our HRS task produces results in the form of relation triplets 〈girl [left hand], hold, book 〉 and exacts segmentation masks of the book, with which the robot can easily accomplish the grabbing task. Correspondingly, we collect a new Person In Context (PIC) dataset for this new task, which contains 17,122 high-resolution images and densely annotated entity segmentation and relations, including 141 object categories, 23 relation categories and 25 semantic human parts. We also propose a Simultaneous Matching and Segmentation (SMS) framework as a solution to the HRS task. It contains three parallel branches for entity segmentation, subject object matching and human parsing respectively. Specifically, the entity segmentation branch obtains entity masks by dynamically-generated conditional convolutions; the subject object matching branch detects the existence of any relations, links the corresponding subjects and objects by displacement estimation and classifies the interacted human parts; and the human parsing branch generates the pixelwise human part labels. Outputs of the three branches are fused to produce the final HRS results. Extensive experiments on PIC and V-COCO datasets show that the proposed SMS method outperforms baselines with the 36 FPS inference speed. Notably, SMS outperforms the best performing baseline m-KERN with only 17.6 percent time cost. The dataset and code will be released at http://picdataset.com/challenge/index/.


Subject(s)
Algorithms , Semantics , Centric Relation , Female , Humans
19.
IEEE Trans Image Process ; 30: 4788-4801, 2021.
Article in English | MEDLINE | ID: mdl-33929960

ABSTRACT

Single Image Deraining (SID) is a relatively new and still challenging topic in emerging vision applications, and most of the recently emerged deraining methods use the supervised manner depending on the ground-truth (i.e., using paired data). However, in practice it is rather common to encounter unpaired images in real deraining task. In such cases, how to remove the rain streaks in an unsupervised way will be a challenging task due to lack of constraints between images and hence suffering from low-quality restoration results. In this paper, we therefore explore the unsupervised SID issue using unpaired data, and propose a new unsupervised framework termed DerainCycleGAN for single image rain removal and generation, which can fully utilize the constrained transfer learning ability and circulatory structures of CycleGAN. In addition, we design an unsupervised rain attentive detector (UARD) for enhancing the rain information detection by paying attention to both rainy and rain-free images. Besides, we also contribute a new synthetic way of generating the rain streak information, which is different from the previous ones. Specifically, since the generated rain streaks have diverse shapes and directions, existing derianing methods trained on the generated rainy image by this way can perform much better for processing real rainy images. Extensive experimental results on synthetic and real datasets show that our DerainCycleGAN is superior to current unsupervised and semi-supervised methods, and is also highly competitive to the fully-supervised ones.

20.
IEEE Trans Pattern Anal Mach Intell ; 43(5): 1718-1732, 2021 May.
Article in English | MEDLINE | ID: mdl-31751228

ABSTRACT

Multi-way or tensor data analysis has attracted increasing attention recently, with many important applications in practice. This article develops a tensor low-rank representation (TLRR) method, which is the first approach that can exactly recover the clean data of intrinsic low-rank structure and accurately cluster them as well, with provable performance guarantees. In particular, for tensor data with arbitrary sparse corruptions, TLRR can exactly recover the clean data under mild conditions; meanwhile TLRR can exactly verify their true origin tensor subspaces and hence cluster them accurately. TLRR objective function can be optimized via efficient convex programing with convergence guarantees. Besides, we provide two simple yet effective dictionary construction methods, the simple TLRR (S-TLRR) and robust TLRR (R-TLRR), to handle slightly and severely corrupted data respectively. Experimental results on two computer vision data analysis tasks, image/video recovery and face clustering, clearly demonstrate the superior performance, efficiency and robustness of our developed method over state-of-the-arts including the popular LRR and SSC methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...